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We have made heat capacity measurements of superfluid 4He at temperatures very close to the
lambda point, Tλ, in a constant heat flux, Q, when the helium sample is heated from above. In this
configuration the helium enters a self-organized (SOC) heat transport state [1] at a temperature
TSOC(Q), which for Q ≥ 100 nW/cm2 lies below Tλ. At low Q we observe little or no deviation
from the bulk Q = 0 heat capacity up to TSOC(Q); beyond this temperature the heat capacity
appears to be sharply depressed, deviating dramatically from its bulk behaviour. This marks the
formation and propagation of a SOC/superfluid two phase state, which we confirm with a simple
model. The excellent agreement between data and model serves as an independent confirmation
of the existence of the SOC state. As Q is increased (up to 6µW/cm2) we observe a Q dependant
depression in the heat capacity that occurs just below TSOC(Q), when the entire sample is still
superfluid. This is due to the emergence of a large thermal resistance in the sample, which we
have measured and used to model the observed heat capacity depression. Our measurements of the
superfluid thermal resistivity are a factor of ten larger than previous measurements by Baddar et
al.[2].
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The CQ Experiment:
Enhanced Heat Capacity of Superfluid Helium in a Heat Flux

• Guest experiment on DYNAMX (critical dynamics in µg).

• NASA flight experiment.  
• 2008 flight on International Space Station (µg environment).

Purpose:
• Test predictions of the dynamic renormalization group theory.
• When one applies a heat flux, Q, to a sample of superfluid:

– Transition temperature is depressed, Tc(Q) < Tλ

– Heat capacity is enhanced, ∆CQ = CQ – C0, and diverges at Tc(Q)

• Ground-based experiments (disagree with theory):
– TDAS(Q) < Tc(Q), Duncan, Ahlers and Steinberg, PRL, 60, 1522(1988).
– ∆CQ_Harter. ≈ 10×∆CQ_theory, Harter et al., PRL, 84, 2195 (2000).30
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‘Heat from Below or Above’ – ground based

g = gravity, Q = Heat flux, z = height

– ‘Heat from Above’ configuration

• ‘Heat from Above’ produces:
• Self Organized Critical State:

Mouer et. al., PRL, 78, 2421 (1997)
• At low Q the SOC state exists on the 

normal-fluid side of Tλ, where the 
diverging thermal conductivity causes 
the sample to ‘self-organize’ at a fixed 
reduced temperature from Tλ.

– For Q < 0.1 µW/cm2: Tsoc > Tλ

– For Q > 0.5 µW/cm2: Tsoc ≈ TDAS
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Measurement technique

• Heat pulse method

C = ∆H/∆T

∆H = 500 nJ

∆T = 30 nK

Q range: 0 - 6 µW/cm2

T range: Tλ - T ≤ 5 µK
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• Pulse sample, raising its temperature, until T = Tsoc(Q), 
and look for ∆CQ.
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Results - ‘Heat from Above’
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• Sample depth = 9 mm, so Tλ(top) - Tλ(bottom) = 1.2 µK
• Severe gravity rounding (black line).  Compare with µg (dashed line).33
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Results - ‘Heat from Above’
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• Red circle points = ‘Heat from Above’ heat capacity data.
• Black line = calculated gravity rounded, Q = 0, heat capacity
• Dot-dashed line = measured Tsoc(Q).

34



8

Results - ‘Heat from Above’
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Results - ‘Heat from Above’
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Results - ‘Heat from Above’
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Results - ‘Heat from Above’
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Results - ‘Heat from Above’
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Results - ‘Heat from Above’
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Results - ‘Heat from Above’
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• Our measured Tsoc(Q) agrees with Moeur et al., for Q > 0.5 µW/cm2:
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Explanation – the sharp depression
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• This is due to an advancing SOC/superfluid interface.  We can model this:
– Assume the sample’s heat capacity is dominated by the shrinking superfluid

phase, with zero heat capacity contribution from the SOC phase.
– Reasonable assumption:  tsoc is fixed because Q is fixed, therefore the SOC state 

does not absorb any of the heat pulse energy.
– The model (blue line) works very well for Q = 1 to 0.1 µW/cm2, however …
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Simple model fails at low Q due to the ‘healing length’
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simple model

• For Q < 0.1 µW/cm2 (Tsoc > Tλ) develop a ‘healing length’ between 
SOC/normal-fluid, due to the finite κ.  Also observed by Moeur et al.

• We can model this:
– Integrate the heat flow equation: ∇T = -Q/κ (Q, t), using κ(t) = κ0 t –x.
– We generate a thermal profile → increment T → generate a new thermal 

profile → integrate total energy  → compute heat capacity point → repeat …
– Improved model = blue line. κ0 the only adjustable parameter. 

T

z

Tsoc(z)Tsoc(z)

High Q Low Q

healing 
length

Tλ(z)

43



17

The Q dependant depression
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• Remember CQ is looking for an enhancement and we see a depression, 
why?

• Well, the depression occurs in the superfluid phase for T < Tsoc(bott)
– Maybe it's due to a large superfluid thermal resistivity causing a 

thermal gradient in the sample and a reduced bulk heat capacity?44
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Previous s/f thermal resistivity measurements

• Baddar et al., J. Low Temp. Phys., 119, 1 (2000)
– ‘Heat from Below’ experiment.  For Q ≥ 10 µW/cm2, they observed a 

power law behaviour:
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• However, these previous measurements proved to be too small to explain 
our observed depression.

• We made our own measurements, using the sidewall thermometers.45
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• We observe a larger R ∼ t02.8 ≈ 10×RBaddar

• In addition, our high Q data show a clear change in thermal resistivity
(insert: data at Q = 6 µW/cm2), giving two values of t0 at each value of Q.

• We fit our data to R = (t/t0)-2.8 and extracted t0 at each value of Q.

Sample heights:
1.060 cm

∇ 0.989 cm
+ 0.940 cm
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Explanation – the Q dependant depression
• So the depression is due to an anomalously large superfluid thermal 

resistivity.  Again, we can model this:
– As before we integrate the heat flow equation, ∇T = -Q/κ (Q, t), 

using our measured κ (Q, t).
– The model works very well for all of our data (blue line).
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Interesting implication
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"Heat from Below"Harter et al.

• In our model, when we integrate the total energy, we use the cQ=0 (black 
line) and not the enhanced cQ_Harter (green line) - Harter et al., PRL, 84, 2195 
(2000).
– This implies that in ‘Heat from Above’ experiments there is no, or very little, 

heat capacity enhancement.
– It does not rule out cQ_theory that may still be there, but which would be too 

small to resolve due to gravity rounding.
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Conclusions

We have made the first measurements of the heat capacity 
of liquid 4He in a ‘Heat from Above’ configuration:

• We can explain all the features of our data.
• Our measurements provide independent confirmation of 

the existence of the Self Organized Critical state.
• We are in agreement with Mouer et al., PRL, 78, 2421 (1997).

– We measure the same tsoc(Q) dependence,
– and observe ‘healing length’ effects at low Q values.
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Conclusions
Our ‘Heat from Above’ measurements differ with those 

made in ‘Heat from Below’ as follows:

1. Our modelling implies no large heat capacity 
enhancement
─ Harter et al., PRL, 84, 2195 (2000).

2. We observe a large superfluid thermal resistivity
─ 10x larger than Baddar et al., J. Low Temp. Phys., 119, 1 (2000).

3. We observe a sharp kink/change in R, seen clearly in 
our deeper samples and at large Q values.

This leads to the question:
• Why do such seemingly similar experimental 

configurations produce such different behaviour …. ?50




